A Feasible BFGS Interior Point Algorithm for Solving Strongly Convex Minimization Problems

نویسندگان

  • Paul Armand
  • Jean-Charles Gilbert
  • Sophie Jan-Jégou
  • Jean Charles Gilbert
چکیده

We propose a BFGS primal-dual interior point method for minimizing a convex function on a convex set de ned by equality and inequality constraints. The algorithm generates feasible iterates and consists in computing approximate solutions of the optimality conditions perturbed by a sequence of positive parameters converging to zero. We prove that it converges qsuperlinearly for each xed . We also show that it is globally convergent to the analytic center of the primal-dual optimal set, when tends to 0 and strict complementarity holds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Feasible BFGS Interior Point Algorithm for Solving Convex Minimization Problems

We propose a BFGS primal-dual interior point method for minimizing a convex function on a convex set defined by equality and inequality constraints. The algorithm generates feasible iterates and consists in computing approximate solutions of the optimality conditions perturbed by a sequence of positive parameters μ converging to zero. We prove that it converges q-superlinearly for each fixed μ....

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

BFGS - IP algorithm for solving strongly convex optimization problems with feasibility enforced by an exact penalty approach

This paper introduces and analyses a new algorithm for minimizing a convex function subject to a finite number of convex inequality constraints. It is assumed that the Lagrangian of the problem is strongly convex. The algorithm combines interior point methods for dealing with the inequality constraints and quasi-Newton techniques for accelerating the convergence. Feasibility of the iterates is ...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Generalization of Primal-Dual Interior-Point Methods to Convex Optimization Problems in Conic Form

We generalize primal-dual interior-point methods for linear programming problems to the convex optimization problems in conic form. Previously, the most comprehensive theory of symmetric primal-dual interior-point algorithms was given by Nesterov and Todd 8, 9] for the feasible regions expressed as the intersection of a symmetric cone with an aane subspace. In our setting, we allow an arbitrary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999